
PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

- ~ 9d-P/s (e.,V, v)_
- - DOCUMENT IDENTIFICATION Ti '/ /~ 9 5

,fzz.5T,7-CC-C9

DISTRIBUTION STATEMENT

ACCESSION FOR

NTIS GRA&I

DTIC TAB

UNANNOUNCED

JUSTIFICATION

BY""
DISTRIBUTION/ " :

AVAILABILITY CODES

DIST AVAIL AND/OR SPECIAL

DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETURNED

S9 10 3 101
DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC FORM 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY BE USED UNTIL
MAR 86 STOCK IS EXHAUSTED.

NCC-TI{E NATIONAL CENTRE FOR INFORIIATION
TECHNOLOGY United Kingdom

CJ COMPUTER ASSISTED ADA VALIDATION TOOLS

* I (C.A.V.)

COMPARATOR AND ANALYZER

IDate: juy1988

Author: Maurice ASSOULINE

44III~7

U
1

I

CONTENTS

I
1. FUNCTION OF THE ANALYZER-COMPARATOR TOOL

2. TEST SUITES, VALIDATIONS, AND TEST STATUS

1 3. TEST RECORDS

3.1 Test record kinds

3.2. Status of a GLOBAL test record

3.3. SPLIT records of a GLOBAL/SUBTEST recordU 3.4. Test record of the main Ada subprogram

3.5. Test attributes

4. FILES USED BY THE TOOL

4.1. Input files

4.1.1. Test result files

4.1.2. Test result file description

4.1.3. Test suite description: TTINF file

4.1.4. User interface files

4 ..5. Terminal control sequences file

4.1.6. Initialization file

4.2. Files created by the tool

4.2.1. Test suite files

4.2.2. Validation files

4.2.3. Output files

3 5. COMMANDS.

5.1. "Validation management" commands

5.1.1. Initialize a test suite

5.1.2. Initialize a validation1 5.1.3. Set a validation as the current validation

5.1.4. Set a validation as the reference validation

I

23 .5.1.5. Change the current "Default output file"

5.1.6. Display validation information

5.1.7. Update the status file of a validation

5.1.8. Close a validation

5.1.9. Operations on tests£ 5.1.10. Operations on sets of tests

5.1.11. QuitU 5.2. "Operations on tests" commands

5.2.1. (Re)define the current test or subtest

5.2.2. Display test inforxaation

5.2.3. Analyze execution result files
5.2.4. Compare test result files

5.2.5. Update test status

5.2.6. Make a progress report of the current validation3 5.2.7. Validation management operations

5.2.8. Operations on sets of tests (same command as 5.1.10)1 5.2.9. Quit (same command as 5.1.11)

5.3. "Operations on sets" commands

5.3.1. List the sets of the current validation

5.3.2. Display test information (same command as 5.2.2.)
5.3.3. Write a set to a file

5.3.4. Read a set from a file

5.3.5. Redefine the current set

3 5.3.6. Add a test to a set

5.3.7. Remove a test from a set3 5.3.8. Union of two sets

5.3.9. Intersection of two sets

5.3.10. Difference of two sets

5.3.11. Extract a subset from a set

5.3.12. Display the history of the sets

5.3.13. Validation management operations (same command as

5.2.7)

i5.3.14. Operations on tests (same command as 5.1.9)

5.3.15. Quit (same command as 5.1.11)

6. TOOL INSTALLATON

6.1. Compiling and linking the program

6.2. Filling the initialization file (CAV.INI)

6.3. User interface files

I
I

3
.6.4. Terminal control sequence file
6.5. TTINF file and test suite files
6.6. Validation files

6.7. Test result files

7. TOOL EXECUTION

I
I
I
I
I
I
I
I
U
I
I
I
I
I
I

I
I

4

I
I
I

The CAV tool ("Computer Assisted Ada Validation") regroups

j the comparator, the analyzer, and a user interface allowing

an easy, interactive use of these tools.I
The tool handles single tests, or sets of tests: a number of

commands are provided for constructing all kinds of sets or

subsets of tests.

I
I
I
I
1
I
I
I
I
I

I

1 5
3 .1. FUNCTION OF THE ANALYZER-COMPARATOR TOOL

The Analyzer-Comparator tool CAV ("Computer assisted Ada

Validation") offers the following services, through an

interactive user interface:I
- Automatic analysis of the execution result files of the

executable tests (class A, C, D, E).

- Automatic comparison of test result files of a validation

to the corresponding files of a reference validation.

This comparison may operate on compilation result files

(for B class tests), on link result files (for L class

tests), on execution result files (for executable tests),

n or on any other kind of files associated to the tests.

3 The comparison process is able to ignore some differences

between the files to compare: these non-significant

differences may be specified in input files describing the

result files of each validation (1 description file per

validation).

- Test information handling: information on each test,

3 including the results of the Analysis/Comparison, is

stored in data files, and may be extracted from these

3 files, either for a single test or for a given set of

tests.

n - Set construction: sets of tests may be built, using

commands such as intersection, union, selection of tests

according to a number of criteria, etc.

3 A few predefined sets are provided: fullset, analyze-set,

compare-set, etc.

Most commands can operate on a set of tests, as well as a

3 single test.

I

I

16
3 .2. TEST SUITES, VALIDATIONS, AND TEST STATUS

The tool CAV handles 2 main kinds of in' rmation structures:

"test suites" and "validations". Each test suite or

validation is implemented by a set of files. Each validation

3 is associated to a test suite. Several validations may share

the same test suite. For example, a validation and the

corresponding pre-validation (reference validation) are

always associated to the same test suite.

U Each test suite has a name, which is used inside the names of

the files of this test suite, to distinguish these files from

the files of the other test suites. For example, the files of

a test suite named "ACVC19" will all have names that enclose

3 the string "ACVC19". Each validation has also a name, which

is used in the same fashion inside file names.I
One of the files of a test suite is the test data base file.

This file contains a test record for each test of the test

suite, with information such as the test name, test

attributes, test kind (GLOBAL, SUBTEST, or SPLIT), and

references to related test records (main subprogram subtest,

original test of a SPLIT test, etc.).I
Since the test data base may be used by several validations,

3 it does not contain information about the results of the

analysis/comparison for each test. This information is

enclosed in a "test status" value associated to each test.

The test status values are stored in a "status file"

associated to each validation.

A test status may have the following values:I
- UNKNOWNYET: initial value of the status of some tests.

I IRRELEVANT: status of the subtests not associated to a

result file (for example, subtests of class C, other than

the main-subprogram subtests).

I

U

1 7
- TOBECHECKEDBYANA (abbreviation: TOANALYZE): status

of the tests that must be submitted to the analyzer.

3 - TOBECHECKEDBYCOM (abbreviation TOCOMPARE): status of

the tests that must be submitted to the comparator.

TOBECHECKEDBYHAND (abbreviation: TOHANDCHECK):

3 status of the tests that the tool has not been able to

treat. Result files have to be checked manualiy.

I - NONCONFORMANT: status of a test whose result file has

been compared to the corresponding file of a reference

validation, and has been found different from this

reference file. (such a file must usually be checked by

3 hand, to find out whether the differences detected by the

comparator are significant).

I INAPPLDOSPECIAlACTION (abbreviation: INAPDOSPCL):

status of the tests that need a special action to be done

before they can be given the status INAPPLICABLE. Usually

thiL special action consists in examining the result

5 files (for example, to check the contents of some

message).

PASSEDDOSPECIALACTION (abbreviation: PASSEDDOSPCL):

status of the tests that need a special action to be done

before they can be given the status PASSED. Usually this

action consists in examining the result files (for

example, to check the contents of some message).

3 - WITHDRAWN: status of the withdrawn tests of a test suite.

A withdrawn test keeps the same status during the whole

* process of a validation.

- ANOMALOUS: status of a test whose result was not expected

during the formal validation, given the pre-validation

analysis, but which is judged allowable under the

* circumstances of the validation.

I

11 8
- - INAPPLICABLE: status of the tests that have been accepted

as inapplicable, either by the tool or by manual checking

* of the result files.

FAILED: status of the tests that have been judged as3 failed, either by the tool or by manual checking of the

result files.

PASSED: status of the tests that have been accepted as

passed, either by the tool or by manual checking of the

result files.

U The status value of a given test or subtest changes during

the validation process. This value may be updated

automatically by the analyzer/comparator, or it may be

updated by hand. At the end of the validation process, all3 tests should have one of the following status values:

3 WITHDRAWN, ANOMALOUS, INAPPLICABLE, FAILED, PASSED,

IRRELEVANT.

I These are "final" status values. The other values are

transitory, they always indicate that something has to be

3 done to continue the treatment.

I
I

I
i
I

I

I

9
3 .3. TEST RECORDS

1 3.1. Test record kinds

The test data base of a test suite contains test records of 3

3 kinds: GLOBAL, SUBTEST and SPLIT.

3 . A test record of the kind GLOBAL represents a test as

identified by the validation logbook, built up of one or3 several test files (test file = Ada source file of a

test).

I . A test record of the kind SUBTEST represents a subtest,

identified by a particular test file which is only one of

* a number of test files associated with a GLOBAL test.

i . A test record of the kind SPLIT represents the part of a

test identified by a split file, which is a file created

by the implementor to hold edited versions of test source

files. A SPLIT kind record is related to its "original"
test record, which represents the original version of a

I test file, not edited yet by the implementor.

U
I
U
I
i

I
I

i

1 10
3 . 3.2. Status of a GLOBAL test record

When a test has subtests, there is one GLOBAL record

representing the complete test, and one SUBTEST record for

each subtest, i.e. for each test file. The GLOBAL record is

* not associated to a test file: the status of this GLOBAL

record is computed by the tool from the status values of all3 the associated subtests. For example, if the status of one of

the subtests is set to the value FAILED by the comparator, or

by the analyzer, or by hand, the tool will automatically set

the status of the GLOBAL test record to FAILED.

3 If all the subtests of a test have the status PASSED, except

one that has the status TOBECHECKED BY COM, when the3 comparator checks this last subtest and sets the value of its

status to PASSED, the status of the GLOBAL test record will3 automatically be changed from UNKNOWNYET into PASSED.

When a test has no subtests and no split files, it is

represented by a single test record of kind GLOBAL. This test

record is associated to the single file of the test, and its3 status refers to this single test file.

U
I

I
I

I
I
I

1 .3.3. SPLIT records of a GLOBAL/SUBTEST record

When a test with no subtests is split, it is associated to

several test files: one "original" test file, and one or more

split files derived from the original file. In this case, one

i test record of kind SPLIT exists for the original file, and

one for each split file. There is a record of kind GLOBAL

3 representing the whole test, but it is not associated to any

test file. Its status is derived from the status of all the

SPLIT records, as in the case of a GLOBAL test having

subtests. Note that the GLOBAL record and the SPLIT record of

the original test file refer to the same test name. (This is

the only case when two test records contain the same test

name. When the tool needs to find a test record of this kind

3 by its name, it will need to know which one of the 2 records

must be found: the GLOBAL one or the SPLIT one).

U When a subtest file has been split, there is one record of

kind SUBTEST for the original file of the subtest, and one

record of kind SPLIT for each split file.

I

I
I
I
U
i

I
N ... , . ,=m I

I

1 12
.3.4. Test record of the main Ada subprogram

For the executable tests (classes A, C, D, E), only the

particular subtest which is associated to the main Ada

subprogram has an "interesting" status value. This "main

3 subtest" is the only one that is associated to an execution

result file. The analysis of this execution result file will

determine the status of the main subtest, which is also the

status of the GLOBAL test. If an executable test has no

subtests, there is only a GLOBAL record, which is associated

to the main Ada Subprogram, and to the execution result file.

If an executable test does have subtests, one of its SUBTEST

3 records is associated to the main Ada subprogram and to the

execution result file, its GLOBAL record is not associated to

3 a file.

The same remark applies to the L class tests: the link result

file is attached to the main Ada subprogram, which is

associated to a particular SUBTEST record, or to the GLOBAL

record if there are no subtests.

3 In these two cases (executable tests and L class tests), the

SUBTEST records, other than the main-subprogram one, have

3 usually the status IRRELEVANT.

I
U
I
I
I
I
I

I
I

13

I .3.5. Test attributes

Some test information is attached to the test records in the

form of attributes, that a test may possess or not. The

attribute information for a given test is known before the

analysis/comparison of the result files: it is independent

from the test results, unlike the test status.I
The attributes of a test apply to the test as a whole, they

3 concern all the test records of the test: the GLOBAL record,

as well as the associated SUBTEST or SPLIT records, if there

* are any.

A test may have one or several of the following attributes:

- WITHDRAWN (abbreviation: W), for tests that have been

suppressed from the validation, because they do not

conform to the Ada standard.

N INAPPLICABLE (abbreviation: I), for tests using Ada

features that are not supported by the implementation.

- SPLIT (abbreviation SPL), for tests that include one or

3 several split files.

- MACRO (abbreviation: M), for tests that make use of

implementation-dependent values: the source files of

these tests must be processed (through "macro" editor

commands, for example) to replace macro-names (names that

begin with a dollar sign) by the actual values specified

by the implementor.

3 SPECIAL (abbreviation: SPE), for tests that need some

special action to be done, or some special information to

3 be collected by the validation team. (For example, check

that a test has created or deleted some file, or check

the contents of some information message emitted by the

test.)

-

I
I

143 -4. FILES USED BY THE TOOL

i Several kinds of files are used by CAV:

I 4.1. Input files

3 The input files needed to run the program are:

i Test result files

- Test result file description (1 file per validation)

- Test suite description file ("TTINF" file, produced by

the Tailoring Tool for a given implementation)

- User interface files (provided with the CAV tool)

3 Terminal control sequences file

- Initialization file (contains the names of all the other

files used by CAV, and generic file names for test result

files, etc.).

I
I
I
I
i
i
I

i
I

15

i .4.1.1. Test result files

They include compilation result files, link result files, and
execution result files. A result file must not contain the

results of several tests.

The names of the result files are computed by the tool from3 generic names specified in the initialization file. This

allows the implementor to distribute the result files as
i desired, and to take advantage of the hierarchical directory

structure of the host system, when possible (see 4.1.6).I
i
I
i

I
I
U
I
I
I
I
I
II

I
I

16

3 .4.1.2. Test result file description

The format of the compilation and link result files may be

different from a validation to another one, or from a pre-

validation to the corresponding validation.

It is necessary to provide the comparator with information

about non-significant differences: for example, when

comparing 2 compilation result files, the number of lines

3 that must be ignored at the beginning of each file.

It is also necessary to specify to the Analyzer the result

messages that it should look for in the execution result

files: for example, the strings that indicate that an

executable test is PASSED, FAILED, etc. These character

strings may vary slightly between 2 versions of the ACVC

* suite (procedure RESULT of the package REPORT).

3 This information, about every kind of result files of a given

validation, must be specified in a "RESULTFILEDESCRIPTION"

file. Such a file must be provided for each validation or

pre-validation to be treated by the Analyzer or the

Comparator.

A frame (model file) is provided for the RESULT FILE

3 DESCRIPTION files. It contains comments that explain in

detail how the model file should be completed.

* The RESULTFILEDESCRIPTION files need not necessarily be in

the current directory when running the tool: they may be

placed in any directory, as long as their full path name

conforms to the generic file name specified for these files

in the initialization file (see 4.1.6).

I
U

IL

I
I

17

.4.1.3. Test suite description: TTINF file

The TTINF file is the output file produced by the Tailoring

Tool. It is used by the CAV tool as an input file describing

a test suite. It contains the list of the test names, the

names of the subtests/splits associated to each test, the

test attributes, and the indication of the main subprogram

subtest.

The TTINF file is tailored for a particular implementation,
it takes into account the inapplicable tests and the split

tests of this implementation.

The TTINF file may be placed in any directory, as long as its

full name conforms to the generic name defined in the

initialization file (see 4.1.6).i
I
i
i
I
I
I
I
I
I
I

I
18

.4.1.4. User interface files

The user interface files are parts of the program CAV, they

are provided along with the program. They should not be

modified by the validation team. The information that they

hold could have been included in the program in the form of

Ada text, but instead, it has been put in special text files,

i to allow an easier maintenance of the program, as well as a

faster and better coding of the user interface.

U These files are:

i - The 3 menu files: Validation management, Operations on

tests, Operations on sets.

- The command parameters file.i
These files may be placed in any directory, as long as their

3 full name conforms to the corresponding name specified in the

initialization file (see 4.1.6).

i
I
I
i
i
i
i
i
I

I
I

19

- 4.1.5. Terminal control sequences file

This file contains the control sequences for the video
terminal used when running the tool. The validation team must

make a copy of the model file provided, and fill this copy

with the control sequences that are recognized by the

terminal.I
In the version 0 of CAV, only a few sequences are used: it is

not necessary to fill the requences that are commented out.

All the information needed to fill this file is given in the

comments of the model file.

This file may be placed in any directory, as long as its full

name conforms to the corresponding name specified in the

initialization file (see 4.1.6). It is convenient to choose a

* file name that recalls or contains the name or identification

of the corresponding terminal.U
I
I
U
I
I
I
i
i
I

B ,, m li

I
I

20

.4.1.6. Initialization file

The initialization file is read by the program at the

beginning of its execution. It contains the names of all the

other files needed by the tool. Some of these names are

regular file names, and some are "generic" file names. A

generic file name is a pattern, used to generate several file

names, parameterized by "sub-names" which may represent test

names, validation names, test chapters, test classes, etc.

For example, the following generic file name will generate

the names of all the link result files, in some Unix-like

file system:

I /acvc/results/valid_SV/CX/$T.lnk

SV, $C, SX and ST are special codes used as "formal

parameters" of the generic name. They represent respectively

the validation name, the test class, the test chapter and the

test name. To generate the name of the link result file of

the test LA5007C1M, in a validation named "SUN110", for

example, SV will be replaced by "SUN110" $C will be replaced

by "L", $X will be replaced by "A", and ST will be replaced

I by "LA5007C1M". The resulting name is:

/acvc/results/validSUN110/LA/LA007ClM.lnk

3 Before running the tool, the validation team must make a copy

of the model file provided for the initialization file, and

specify in this copy the file names and the generic file

names that should be used by the tool. All the information

needed to fill the initialization file is given in the

comments of the model file.

3 The initialization file defines also the names or generic

names of some of the output files of the CAV tool. For

example it contains the generic names of the validation files

created by the tool for each validation (these names are

parameterized by the validation name) and the generic names

21

of the test suite files created by the tool for each test

suite (parameterized by the test suite name).

I The generic file names allow a fairly wide choice for the

distribution of the files. Test result files, for example,

may be placed in one single directory, or distributed in many

ways between several directories, grouped by test class, by

3 test chapter, etc. The only restriction is that the files

corresponding to a given generic name must all have names

with the same pattern: for the link result files, for

example, it is not possible to have one directory per class

for the chapter 3, and one single directory regrouping all

classes of tests for the chapter 4. This follows from the

fact that all the link result file names are generated from a

3 single generic name.

3 When it is possible, it is convenient to specify the generic

names for the validation files and test suite files (created

by the tool) in such a way that each validation and each test

suite is associated to a directory that contains all the

files of this validation or test suite. For example, all the

validation files could have generic names that start with the

following directory name (in a Unix-like file system):

/acvc/valid_$V/cavfiles/...!
and, for the result files:

I /acvc/valid_$V/results/...

I The initialization file may have any name and may be in any

directory: at the beginning of the program execution, the

Suser will be asked for the file name. However, if the

initialization file has the default file name "CAV.INI", and

3 if it is in the current directory, the program will find it

without needing to ask its name. (This default file name is

defined in the program as a constant of the type STRING, in

the package IMPLEMINFO. If a different default file name is

I

I
I

223 . needed, you znay change the value of this constant in the Ada

source text).

I
I
I
I
I
a
I
I
I
I
U
I
I
I
I
I
I

I
I

23

.4.2. Files created by the tool

The program will create several kinds of files:

- Test suite files, that hold information on a test suite.

- Validation files, that hold information on a validation.i
- Output files, containing the output of a command.

I Usually, the name of the output file of a command may be

specified by the user, when entering the command. But the

names of the test suite files and validation files are

constructed by the tool from the generic file names specified

3 in the initialization file (see 4.1.6).

I
I
I
I
U
I

I

I
I
I

I

1 24
.4.2.1. Test suite files

When a new test suite is created, the program uses the input

file TTINF to create the following files:

5 Test suite descriptor file: general information on the

test suite.U
- Test data base file: data base of the test records.

U These 2 files describe completely the test suite.

I The program also creates the files containing the definition

of some useful sets of test records:

- Full-set: set containing all the test records.

- Withdrawn-set: set of the withdrawn test records.

I Analyzeset: set of the test records to be submitted to

the Analyzer (Class A/C/D/E, main-subprogram records, not

withdrawn).

3 - Compareset: set of the test records to be submitted to

the Comparator (Class B records associated to a source

3 file, and class L main-subprogram records, not

withdrawn).

I Special-set: set of the test records associated to a

result file that needs some special hand checking

(records having the SPECIAL attribute, either of the B

class, or main-subprogram records of other classes, not

3 withdrawn).

- Mainset: set of the main-subprogram records, not

withdrawn.

I Global-set: set of the test records of the kind GLOBAL,

not withdrawn.

I

25

3 -4.2.2. Validation files

When a new validation is initialized, the program creates the

following files, using the information available in the files

of the associated test suite:

- validation descriptor file: general information on the

3 validation.

3 Status table file: file containing the current status of

each test of the validation. This file is updated when

leaving a session of the tool by the command "Quit". It

may also be updated in the middle of a session, by the

command "Update the status file".

- Logbook file: text file containing messages from the3 tool, for example messages from the comparator and the

analyzer, indicating the name of the test currently3 treated. Messages are also output to the logbook file

when the status of a test changes.

1 When an executable test is SPECIAL, its execution result file

is copied into the logbook file by the Analyzer, because it5usually contains information that must be checked by the

validation team. This saves some time and some work to the3 validation team, since most of the needed information about

test results may be found in the logbook file after the CAV

session: there is no need to look for many individual test

result files.

I The logbook file is not overwritten when a new tool session

starts after interruption of a previous session on the same

validation: messages are appended at the end of the logbook

file. (The procedure TEXT_IO.OPEN does not allow opening an3 existing text file to append text at the end of this file:

this has been realized through the use of an auxiliary file,

5 the "Old-logbook" file.)

I

I
i

26

£ Another validation file is sometimes created after a

validation has already been initialized:

i The Lasttreatedset file: this file contains the set of

tests that has been used the most recently as a parameter

of one of the following commands:

S. "Compare" (call to the Comparator)

I . "Analyze" (call to the Analyzer)

S. "Update test status"

This set of tests is saved into the file just before the
command is executed, so that it is not lost in the case the

command accidentally stops before being completed (because of3 a crash or some interruption). This allows an easy re-

starting of the set treatment, either from the beginning or3 just for the not-treated part of the set.

I
I
I
I
I
3

I
I

27

.4.2.3. Output files

i Severa' commands have an "Output file" parameter,

allowing the result of a command to be written into a

file specified by the user. The default output file is

usually the screen (standard-output), but it may also be

a file (defined by the user through the command "Change

3 the default output file").

5 When a default output file is used for the output of a

command, the output text is appended at the end of the

default output file, which remains open for future commands.

This allows grouping in a single file the output of several

successive commands. When an output file, other than the

default one, is used for the output of a command, this file

is opened just for this command, and closed after the command

is completed: it contains the output of a single command.

5 - The command "Write a set to a file" creates a file

containing the list of the tests of a set. This file is

not a text file, it contains index values refering to the

test records of the test data base.

I
I
I
I

I
I
I

I
I

28

£ -5. COMM [NS

The commands of CAV are interactive. They are put in L
command menus:

I- Validation management.

3 Operations on tests.

- Operations on sets of tests.

When running the tool, tne first menu that is displayed is
the Validation Management menu.

I From each menu, it is possible to access the other menus by

typing the corresponding command. However, access to the3 "Operations on tests" menu or to the "Operations on sets"

menu will be denied if no current validation has been3 previously defined (by the command "Set a validation as the

current validation").

I After a command has been typed, the user will be prompted for

the parameters of this command, if there are any. Whenever

necessary, information text will be displayed, to help the

user answer the questions.I
Most parameters have a default value, which is displayed on3 the screen together with the question asking the user for the

parameter value. This default value may be selected by simply

pressing the (Return> key instead of typing a value.

When a parameter has no default value, the user must type an

answer, other the <Return) key: any number of carriage-return

characters will be skipped when expecting a value from the

3 keyboard.

It is always possible to cancel a command by typing "quit"
instead of a parameter value, or instead of the answer to

some question: the effect of the "quit" answer is always to

II
I

29

3 . get back to the previous interactive level: either the prompt

asking for a parameter value, or the menu, or the end of the

program execution (if "quit" is typed 'astead of a command,

the execution of the tool terminates).

i Every command is associated to a number in the menu, and to

call a command, the user must type the associated number.

3 However, some commands may also be called by typing an

abbreviation: this is convenient for the commands that are

5 present in several menus, with a different number in each

menu.

I The commands that may be called by typing an abbreviation

are:

- "Operations on tests" menu : abbreviation "t"

- Operations on sets" menu : abbreviation "s"

- "Validation management" menu : abbreviation "v"

i - "Quit" : may be called by typing
"quit"

The user interface of CAV is not case sensitive: the answers

3 to all questions and the parameter values may be typed in

uppercase or lowercase, or both.

U However, the file names typed by the user (output files for

the command output) will be used with the same lettercase as

specified by the user, in order to fit the file systems with

case sensitive file names.I
I
i
I

I
I

30

3 .5.1. "Validation management" commands

5 The validation management menu looks like the following list

of commands:

1 1 Initialize a test suite

2 Initialize a validation

3 Set a validation as the current validation

4 Set a validation as the reference

3 validation

5 Change the current "Default output file"

6 Display validation information

7 Update the status file of a validation

8 Close a validation

t) 9 Operations on tests

(s) 10 Operations on sets of tests

3 (quit) 11 Quit

3 Here follows a description of each command and its

parameters.I
I
I
I
I
I
I
I
I

I
I

31

£ -5.1.1. Initialize a test suite

3 Parameters:

- Name of the test suite

NOTE: The test suite name that you will type will be

inserted in character strings (defined in the

initialization file) to generate the names of the

3 test suite files. If the file names generated this

way include directory names, these directories must

exist, otherwise the initialization of the test suit

will fail.

i
Action:

This command constructs the name of the TTINF file of the

3 test suite, opens this file, and extracts data from this

file to create the test suite files. (Mainly the

£ testdatabase file.)

I
i
I
I
I
I
I
I
Ia I

I

I
3 .5.1.2. Initialize a validation

3 Parameters:

3 - Name of the validation

NOTE: The validation name that you will type will be
inserted in character strings (defined in the

initialization file) to generate the names of the3 validation files. If the file names generated this

way include directory names, these directories must

exist, otherwise the initialization of the

validation will fail.

I - Is it a pre-validation ? (Yes/No)

3 Name of the associated test suite

Action:

i This command creates the files of the specified

validation, except if they already exist ; In particular,

it initializes the contents of the status file. Then, it
sets the specified validation as the current validation

3 (see 5.1.3).

I
I
I
$
I
I

I
I

33

3 .5.1.3. Set a validation as the current validation

3 Parameters:

Name of the validation

3 Action:

3 This command opens the files of the specified validation

and loads information from these files, except if it has

been previously done. Then, it sets this validation as

the current one, i.e. the default one used for operations

i on tests or sets of tests.

If this validation has been used previously in the same

session, the sets of tests that have been constructed

previously become accessible again, and the previous

3 values of the "current set" and "current test" are

restored.i
i
I

I
U
I

I
I

I

34

I . 5.1.4. Set a validation as the reference validation

3 Parameters:

3 - Name of the validation

I Action:

3 This command opens the files of the specified validation

and loads information from these files, except if it has

3 been previously done. Then, it sets this validation as

the reference validation, which is the validation that

provides the test result files to be compared to the

corresponding files of the current validation.

3 NOTE: the reference validation and the current validation

must be associated to the same test suite, in order

3 to ensure that each test file of the current

validation matches an existing reference file.

I
I
I
I
I
I
I
I
I

I

1 35
3 .5.1.5. Change the current "Default output file"

Parameters:

Name of the new default output file

3 Default: STANDARDOUTPUT

Action:

I If the specified file name denotes an existing file, the

user is asked to confirm whether this file may be

overwritten. If the answer is "yes", or if the file name

does not denote an existing file, this command closes the

3 previous "default output file", unless it was

STANDARDOUTPUT, and opens the specified file, which

3 becomes the "default output file".

The "default output file" is used for the output of some

commands, when the user has not specified a particular

output file for the command.

The output of several commands may be sent to the default

3 output file: each command output will be appended at the

end of the file, and will not overwrite the previous

contents of the file (as long as the default output file

does not change). On the contrary, when a particular

output file is specified for a command, it remains open

only during this command execution, and it contains only

the output of this single command.

Initially, the default output file is STANDARDOUTPUT.I
I
I
I

I
m

36

1 .5.1.6. Display validation information

i Parameters:

- Name of the validation

Default: current validation, if there is on (see

5.1.3)

- Output file name3 Default: current "Default output file" (see 5.1.5)

NOTE: even if the default output file is not the

STANDARDOUTPUT, you may obtain a display on the
STANDARDOUTPUT by entering the character '>'

1 instead of a file name.

l
Action:

U If an output file has been specified and if it exists,

the user is asked to confirm whether this file may be

overwritten. Then, this command opens the files of the
specified validation and loads Jnf -,n from these3 files, except if it has been previously done.

5 Then, general information on the specified validation is

printed to the output file. This information includes the

name of the associated test suite, the number of global

tests, test counts by attribute, whether the specified
validation is the current one, the reterence one, etc.

If the output file is not the default one, it is left

* closed.

m If the current validation was not previously defined, the

specified validation becomes the current one.

I
I

I
I

37U .5.1.7. Update the status file of a validation

Parameters-

Name of the validation

Default: current validation, if there is one (see

5.1.3.)I
* Action:

If no status value has been modified since the last
update of the status file, no action takes place.

Otherwise, this command writes to the status file of the
specified validation the current status values of the

test records.

Since the status values of the specified validation must

be present in memory, one of the following commands must

have been previously called for the specified validation:

I Initialize a validation, set a validation as the current

validation, set a validation as the reference validation,3 display validation information.

i
I
i

I
I
U
I

I

38

1 .5.1.8. Close a validation

* Parameters:

- Name of the validation

5 Default: current validation, if there is one (see

5.1.3)

- Update status file ? (Yes/No)

* Default: Yes

U Action:

This command deallocates the information about the

specified validation that has been previously loaded in

3 memory, and closes any open file associated to the

specified validation. This command is useful when

information has been loaded concerning too many

validations, preventing the user from "opening" another

validation.

If the status values of the tests records have been

5 modified since the last update of the status file, and if

the updating of the status file has been requested (2nd

3 parameter), the current status values are written to the

status file, as in the command 5.1.7.

IThe specified validation must be "open": in other words,

information about this validation must have been

previously loaded through one of the following commands:

Initialize a validation, Set a validation as the current

3 validation, Set a validation as the reference

validation, Display validation information.

If some sets of tests have been constructed for the

specified validation, and have not been saved into files

(see 5.3.3), the user will be asked to confirm that these

sets may be discarded (and lost). If the user does not

39

. confirm, the validation will not be closed, so that the

user may save the sets into files.

i Before calling the command "Quit" (see 5.1.11), all the

open validations, except the current validation, must be

closed: this is to ensure that the data created or

updated during the current session (status values, sets

* of tests) will not be lost accidentally when terminating

the session.I
I

I
I
I
I
I
I

I
U
I
U
I

m

40

3 .5.1.9. Operations on tests

m Parameters:

- None

* Action:

This command calls another menu, giving access to all the

operations on tests of the current validation: analyze

result files, compare, etc. (see 5.2).

The current validation must have been previously defined

3 (see 5.1.2, 5.1.3, 5.1.6).

I

I
U
I
I

I
U
I
I
jI

I
41

3 .5.1.10. Operations on sets of tests

* Parameters:

-None

3 Action:

3 This command calls another menu, giving access to all the

operations on sets of tests of the current validation:

set construction, set information, reading a set from a

set file, writing a set to a set file, etc.

* The current validation must have been previously defined

(see 5.1.2, 5.1.3, 5.1.6).U
U
I
I
U
i
I
I

I
]I
.U,,,"-, a li l i l

I

3 - 5.1.11. Quit

Parameters:

Update the status file of the current validation ?

3 (Yes/No)

Default: YesI
* Action:

If any validation, other than the current one, is open,

this command is not executed: the user is asked to close

all these open validations (see 5.1.8). Otherwise, the

3 status file of the current validation is updated, if this

has been requested and if some status value has changed

since the last update of the status file. Then the

current validation is closed (see 5.1.8), all the open

i files are closed, and the program execution terminates.

I
I
I
i
i
I
I
I
I

I

1 43

U
5.2. "Operations on tests" commands

The "Operations on tests" menu looks like the following list

of commands:

1 (Re)define the current test or subtest

2 Display test information (for a single test or

for a set)3 3 Analyze execution result files

4 Compare test result files (to the reference

validation ones)

5 Update test status

6 Make a progress report of the current validation

(v) 7 Validation management operations

(S) 8 Operations on sets of tests

* (quit) 9 Quit

3 Here follows a description of each command and its parameters:

I
I
I
I
I

I
I
i
-a-. . .-. ilsiltm "

I|

I 44

I 5.2.1. (Re)define the current test or subtest

i Parameters:

3 - Test record name

NOTE: if the name specified by the user is ambiguous
(particular situation described in section 3.3), the

user will be asked to specify which one of the

homonym test records (GLOBAL or SPLIT record) he

means.

3 Action:

The specified test record becomes the current default one:

it will be taken as the default test record for the next

* operation on tests.

i
i
i
i
I
i
i
i
i

i

145

5.2.2. Display test information

I Parameters:

- Test record name, or Set name or number, preceded by

the keyword "set".

Default: current test (see 5.2.1), or current set

(see 5.3.5), if the keyword "set" is typed.

- Level of detail (Nameonly, Nameandstatus, Brief,

or Full).

Default: Brief for a single test, Nameonly for a

set.

- Output file name

Default: current "Default output file" (see 5.1.5)

i NOTE: even if the default output file is not the

STANDARDOUPUT, you may obtain a display on the

STANDARDOUTPUT by entering the character '>' instead

of a file name.

I
Action:I

This command displays information about the specified test

or set of tests, on the specified output file. If the

default output file is used, the output text is appended

at the end of this file, and the file remains open for the

output of further commands. If a particular file name is

specified, it is created, it receives the output text,

then it is closed. In the case the specified file name

matches an existing file, the user is asked to confirm

whether he wants to overwrite it, or to specify another

file name.I
I

I

I 46

i According to the specified detail level, the following

information is displayed for the specified test or set of

tests:

* Nameonly: the test record kind and name.

Nameandstatus: the test record kind, name, and status.

Brief: the test record kind, name, status, attributes,
and, if relevant, the number of subtests, number of

splits, name of the main subtest, name of the

original split test.

i NOTE: the status and the attributes are displayed in

their abbreviated form, defined in sections 2 and

I 3.5.

Full: same information as for Brief, not only for the
specified test records, but also for each subordinate

test record: for a GLOBAL record, subordinate test
records are all the associated SUBTEST or SPLIT

records ; for a SUBTEST record, subordinate test

records are the associated SPLIT records, if there

are any.

When displaying information for a set of tests, in

the mode "Full", redundant information is eliminated.

For example, if the set contains a GLOBAL test record
and one of its SUBTEST records, the SUBTEST record
information will be displayed only once (instead of

twice: once as a subordinate record of the GLOBAL
one, and once as a record belonging to the set).

I
I
i

I

I 47

I 5.2.3 Analyze execution result files

i Parameters:

- Test record name, or Set name or number, preceded by

the keyword "set".

Default: current test (see 5.2.1), or current set

(see 5.3.5), if the keyword "set" is typed.

I Output file name

Default: current "Default output file" (see 5.1.5).

NOTE 1: even if the default output file is not the

STANDARDOUTPUT, you may obtain a display on the

STANDARDOUTPUT by entering the character '>' instead

3 of a file name.

NOTE 2: the same output test is also appended to the
logbook file of the current validation (see 4.2.2).

i
Action:I

This command opens and analyzes the execution result

file(s) of the specified test or set of tests, then

updates the test status according to the results of the

3 analysis.

If the first parameter is a set, this set is saved in the

LASTTREATEDSET file of the current validation before the

treatment (see 4.2.2). This allows an easy restarting of

3 the same treatment from a certain point, in case of

interruption.

N The output of the analysis contains the new status of the

treated test(s), as well as any other relevant messages.

It also contains, for the SPECIAL tests, the whole text of

U

I
1 48

I the execution result file. This text is useful to the

validation team, because it usually has to be checked for

special information.

3 The output is sent to the specified output file, and it is

also appendeO at the end of the logbook file of the

curr..ent validation (see 4.2.2). If the default output file

is used, the output text is appended at the end of this

file, and the file remains open for the outplit of further

commands. If a particular file name is specified, it is
created, it receives the output text, then it is closed.

In the case the specified file name matches an existing

file, the user is asked to confirm whether he wants to5 overwrite it, or to specify another file name.

* The analysis consists in opening the execution result

file, looking at the end of this file for the result

message, and updating the status of the test record,

taking into account the contents of this message, and also

the kind of the test record, its attributes, etc. In the

case of a SUBTEST record (this record must represent the

main subprogram subtest), the status of the associated

GLOBAL test record will also be updated.

* Note that the test status are updated in main memory only:

the status file will be updated when one of the following

commands is executed: "Quit" (5.1.11), "Update the status

file of a validation" (5.1.7), or "Close a validation"

(5.1.8).

To take into account the differences that may exist3 between the versions of the ACVC test suite, the analysis

is parameterized by a description of the execution result

files. This description must be provided in the

RESULTFILEDESCRIPTION file of the current validation

(see 4.1.2).

U

I

1 49

i Before calling this command, the RESULTFILEDESCRIPTION

file of the current validation must exist and be correctly

filled, at least for the part corresponding to the

execution result file analysis.

To fill the RESULTFILEDESCRIPTION file, please read the

5 indications in the comments of the model file provided

along with the program.

I
I
i
I
I
I
i
I
I
I
I
I
I
I

I
* 50

i 5.2.4. Compare test result files

I Parameters:

3 - Test record name, or Set name or number, preceded by

the keyword "set".

Default: current test (see 5.2.1), or current set

(see 5.3.5), if the keyword "set" is typed.

i - Kind of test file to compare, to be selected between:

3 . DEFAULT KIND corresponding to the class of the

test, that is:

5 . COMPILATIONRESULT for class B tests,

LINKRESULT for class L tests, and

* . EXECUTION-RESULT for other classes.

COMPILATION RESULT

* LINK RESULT

EXECUTION RESULT

. EXTRA FILE, defined in the initialization file

Output file name

5 Default: current "Default output file" (see 5.1.5)

3 NOTE 1: even if the default output file is not the

STANDARD-OUTPUT, you may obtain a display on the

STANDARDOUTPUT by entering the character ')' instead

of a file name.

i NOTE 2: the same output text is also appended to the

logbook file of the current validation (see 4.2.2).3
I Action:

This command opens the specified test files of the current

validation, and compares them to the corresponding files

I

I

3 51

I of the reference validation, then updates the test status,

according to the results of the comparison.

If the first parameter is a set, this set is saved in the5 LASTTREATEDSET file of the current validation before the

treatment (see 4.2.2). This allows an easy restarting of3 the same treatment from a certain point, in case of

interruption.

I The output of the comparison contains the new status of
the treated test(s), as well as any other relevant

messages. If the files are different, the line numbers of

the first different lines found are indicated.I
The output is sent to the specified output file, and it is5 also appended at the end of the logbook file of the

current validation (see 4.2.2). If the default output file

is used, the output text is appended at the end of this

file, and the file remains open for the output of further
commands. If a particular file name is specified, it is
created, it receives the output text, then it is closed.

In the case the specified file name matches an existing3 file, the user is asked to confirm whether he wants to

overwrite it, or to specify another file name.

The comparison consists in opening the files to compare,

comparing each line of the "subject file" to the

corresponding line of the "reference file", ignoring any
unsignificant differences (these differences to ignore are

specified by the RESULTFILE_DESCRIPTION files), and

updating the status of the test record, in the current
validation, according to the result of the comparison, and

also to the kind of the test record, its attributes, etc.

I When the status of a test record is updated, any status

change involved in other test records is also made. For

example, if the compilation result files of all the

I

I
3 52

I subtests of a B class test have been compared

successfully, and the PASSED status hab been given to the

corresponding SUBTEST records, then the PASSED status has
also been attributed to the GLOBAL test record, at the3 time the last SUBTEST status was updated (see also 3.2,

3.3, 3.4).

Note that the test status are updated in main memory only:

the status file will be updated when one of the following

commands is executed: "Quit" (5.1.11), "Update the status
file of a validation" (5.1.7), or "Close a validation"

1 (5.1.8).

It is possible to compare any kind of files attached to

the test records, by specifying "EXTRA FILE" for the 2nd3 parameter. The name of these "extra files" will be

constructed in the same way as the other test file names,

using the corresponding generic file name specified in the

initialization file. Of course this generic file name must

be correctly filled in the initialization file before

I trying to compare the "EXTRA TEST FILES".

3 The test status is updated only when comparing the right

kind of files, according to the test class: for executable3 tests, for example, only the comparison of the execution

result files will lead to updating the test status. For

the "EXTRA TEST FILES", the status is never updated.

However, a message is displayed, stating that the files

are identical or different, and indicating the numbers of

3 the first different lines.

3 The RESULTFILEDESCRIPTION files of the current

validation and the reference validation are used by this

command to identify the lines to ignore in the test result

files. They contain, for each kind of file, information

such as:

I

I

I 53

i number of lines to skip at the beginning of the file,

U - character string delimiting the lines to ignore at

the beginning of the file,I
number of lines to skip at the beginning of each

5page,

1 - etc. (see the comments in the model file).

Of course, each validation has its description file, wich

may contain different values of the parameters.

3 Before calling this command:

3 - a reference validation must be defined (see 5.1.4.),

- the RESULTFILEDESCRIPTION files of the current

validation and of the reference validation must exist

ande be correctly filled, at least for the part

corresponding to the kind of files to compare.

3 To fill the RESULTFILEDESCRIPTION files, please read all

the indications in the comments of the model file

3 provided.

I
I
I
I
I
I

... --aie-- - HI/ilI

1 54

i 5.2.5. Update test status

I Parameters:

- Test record name, or Set name or number, preceded by

the keyword "set".

Default: current test (see 5.2.1.), or current set

(see 5.3.5.), if the keyword "set" is typed.

i- New status, to be chosen between:

1 1. UNKNOWNYET

2. IRRELEVANT

3. TOBECHECKEDBYANA

4. TOBECHECKEDBYCOM

3 5. TOBECHECKEDBYHAND

6. NONCONFORMANT

7. INAPPLDOSPECIALACTION

8. PASSEDDOSPECIALACTION

9. WITHDRAWN

10. ANOMALOUS

11. INAPPLICABLE

3 12. FAILED

13. PASSED

3 (see section 2 for the meaning of these values).

- Output file name

Default: current "Default output file" (see 5.1.5)

I NOTE 1: even if the default output file is not the

STANDARDOUTPUT, you may obtain a display on the3 STANDARDOUTPUT by entering the character ')' instead

of a file name.

NOTE 2: the same output text is also appended to the3 logbook file of the current validation (see 4.2.2).

Ir

3 55

I
3 Action

This command is used to update "by hand" the status of a

5 test record. It sets the status of the specified test or

set of tests to the specified value, and displays a log

3 message as well as any other relevant messages.

If the first parameter is a set, this set is saved in the

LASTTREATEDSET file of the current validation before the

treatment (see 4.2.2). This allows an easy restarting of

the same treatment from a certain point, in case of

interruption.I
The output is sent to the specified output file, and it is

3 also appended at the end of the logbook file of the

current validation (see 4.2.2). If the default output file

is used, the output text is appended at the end of this

file, and the file remains open for the output of further

commands. If a particular file name is specified, it is

created, it receives the output text, then it is closed.

In the case the specified file name matches an existing

3 file, the user is asked to confirm whether he wants to

overwrite it, or to specify another file name.

When a test status is updated "by hand", any status change

involved in other test records is also made, just as in

the case the status is updated by the "Analyze" command

(5.2.3) or the "Compare" command (5.2.4). The

corresponding log messages are displayed, letting the user

know that some other status has been updated.I
Note that the test status are updated in main memory only:

3 the status file will be updated when one of the following

commands is executed: "Quit" (5.1.11), "Update the status

file of a validation" (5.1.7), or "Close a validation"

(5.1.8).

I

I
* 56

I 5.2.6. Hake a progress report of the current validation

I This command is not implemented in version 0 of the j~rogram.

U
I
I
I
I
I
I
£
I
I
I
I
3
3
I
I

I

U 57

i 5.2.7 Validation management operations

I Parameters:

5 - None

Action:

i This command calls the menu giving access to the

validation management operations: initialize a validation,

display validation information, etc. (see 5.1).

U
I
I
I
I
!
I
I
I
I
I
I

II

S58

5.2.8. Operations on sets of tests (same command as 5.1.10)

* Parameters:

5 - None

U
Action:

I This command calls another menu, giving access to all the

operations on sets of tests of the current validation: set

construction, set information, reading a set from a set

file, writing a set to a set file, etc.

The current validation must have been previously defined

3 (see 5.1.2, 5.1.3, 5.1.6).

I
I
I
I
I
I
I
I
I
I

I

* 59

I 5.2.9. Quit (same command as 5.1.11)

I Parameters:

3 Update the status file of the current validation ?

(Yes/No)

5 Default: Yes

I Action:

3 If any validation, other than the current one, is open,

this command is not executed: the user is asked to close

all these open validations (see 5.1.8). Otherwise, the

status file of the current "alidation is updated, if this

3 has been requested and if some status value has changed

since the last update of the status file. Then the current

validation is closed (see 5.1.8), all the open files are

closed, and the program execution terminates.

I
I
I
I
U
U
l
I
I

I
*60

I 5.3. "Operations on sets" commands

U The "Operations on sets" menu looks like the following list of

commands:n
1 List the sets of the current validation5 2 Display test information (for a single test or

for a set)

3 Write a set to a file

4 Read a set from a file

5 Redefine the current set

6 Add a test to a set

7 Remove a test from a set

38 Union of two sets

9 Intersection of two sets

* 10 Difference of two sets

11 Extract a subset from a set

12 Display the history of the sets

(v) 13 Validation management operations
(t) 14 Operations on tests

(quit) 15 Quit

3 A certain number of sets are kept in memory, so that they can

be available for operations on tests or on sets. These sets

5 are separated in 2 parts:

- Predefined sets of the associated test suite (these

sets are described in 4.2.1)

3 - User-constructed sets (at the beginning of a session,

these sets are empty).I
Each set occupies a set entry. There are 7 set entries for the3 predefined sets, these entries are numbered from 1 to 7. There

are 5 set entries for the user-constructed sets, numbered from

8 to 12.

I

I
i 61

i When specifying a set as a command parameter, this set may be

identified either by its entry number, or by its name: either

form may be typed. When creating a new set as the result of a
set operation, the user must choose a name for this set, and

he must choose an entry number for this set. If this entry was

already assigned to a set, the user will be asked to confirm5 whether he wants to loose (deallocate) the previous set. The 7

entries reserved to the predefined sets may not be used for a

i new set: they are "read-only" entries.

Here follows a description of each command and its parameters:

i
I
I
I
I
I
i
I
I
I
I
I

I
* 62

E 5.3.1. List the sets of the current validation

I Parameters:

* - Output file name

Default: STANDARDOUTPUTi
3 Action:

This command displays a list of the sets of the current

validation, which are available for any operation on tests

or sets of tests. This list is separated in 2 parts:I
- Predefined sets of the associated test suite (these

3 sets are described in 4.2.1)

- User constructed sets. At the beginning of a session,

these sets are all empty.

I For each set, a line containing the following information

is displayed:I
- set entry number

- set name (18 characters or less)

- number of test records (cardinality of the set)

i - status letter U, S, or N:

U stands for "Unused"

3 S stands for "Saved" (into a set file)

N stands for "Not saved".3
U
I

I

3 63

3 - Comment text (48 characters or less) about the set.

This text is provided by the user for the user-

constructed sets, it helps him remember the contents

of the sets.

The current default set is indicated by a star character

3 ('*') at the beginning of the line.

If an output file has been specified, it is created, it

receives the output text, then it is closed. In the case

the specified file name matches an existing file, the user

is asked to confirm whether he wants to overwrite it, or

to specify another file name.I
I
I
I
I
I
I
I
I
I
I
I

. -a .. ,, .n. man ,m n n InI

I

* 64

i 5.3.2. Display test information (same command as 5.2.2.)

i Parameters:

3 - Test record name, or Set name or number, preceded by

the keyword "set".

3 Default: current test (see 5.2.1), or current set

(see 5.3.5), if the keyword "set" is typed.

i- Level of detail (Nameonly, Nameandstatus, Brief,

or Full).

Default: Brief for a single test, Nameonly for a

set.U
- Output file name

Default: current "Default output file" (see 5.1.5)

NOTE: even if the default output file is not the

STANDARDOUPUT, you may obtain a display on the

STANDARDOUTPUT by entering the character '>' instead

3 of a file name.

I
Action:

U This command displays information about the specified test

or set of tests, on the specified output file. If the

default output file is used, the output text is appended

at the end of this file, and the file remains open for the

output of further commands. If a particular file name is

specified, it is created, it receives the output text,

3 then it is closed. In the case the specified file name

matches an existing file, the user is asked to confirm

whether he wants to overwrite it, or to specify another

file name.

U
I

1

* 65

I According to the specified detail level, the following

information is displayed for the specified test or set of

tests:

3 Nameonly: the test record kind and name.

3 Nameandstatus: the test record kind, name, and status.

Brief: the test record kind, name, status, attributes,

and, if relevant, the number of subtests, number of

splits, name of the main subtest, name of the

I original split test.

3 NOTE: the status and the attributes are displayed in

tleir abbreviated form, defined in sections 2 and

* 3.5.

Full: same information as for Brief, not only for the

specified test records, but also for each subordinate

test record: for a GLOBAL record, subordinate test

records are all the associated SUBTEST or SPLIT

records ; for a SUBTEST record, subordinate test

i records are the associated SPLIT records, if there

are any.

3 When displaying information for a set of tests, in

the mode 'Full", redundant information is eliminated.

For example, if the set contains a GLOBAL test record

and one of its SUBTEST records, the SUBTEST record

information will be displayed only once (instead of

twice: once as a subordinate record of the GLOBAL

3 one, and once as a record belonging to the set).

I
I
I

I
3 66

i 5.3.3. Write a set to a file

I Parameters:

- Set identification (set entry number, or set name)

Default: current default set.

- Name of the filei
Action:

This command creates a file with the specified name, saves

the specified set into this file, then closes it. In tie

case the specified name matches an existing file, the user3 is asked to confirm whether he wants to overwrite it, or

to specify another file name.

I
I
I
I
I
I
I
I
U
I

* 67

i 5.3.4. Read a set from a file

3 Parameters:

- Name of the file (this file must be a "set file",

created by the command 5.3.3).

- Set entry number, for the result set (number between

8 and 12).

Name of the result set (18 characters or less)

3 Default: the name of the file, truncated to 18

characters.i
Comment text associated to the result set (48

characters or less).

Default: empty text.

Action:

This command opens the specified file, reads the set it

3 contains, closes the file, and assigns the specified entry

number to the set.

1 If this entry was already occupied by a set, the user is

asked to confirm that he .ants to deallocate this previous

set (and loose it, if it has not been saved into a file).

* The result set becomes the current default set.

i
i
i
i

i
U 68

i 5.3.5. Redefine the current set

i Parameters:

- Set identification (set entry number, or set name).

- New name for the specified set (18 characters or

less).

Default: previous name, uncbanged

- New comment text for the specified set (48 characters

I or less).

Default: previous text, unchanged.[
i Action:

The specified set becomes the current default set. If a

new name or comment has been specified, this name or

comment is attached to the specified set, replacing the

I previous name or comment.

i
I
I
[
i
i

I
I[

I
* 69

I 5.3.6. Add a test to a set

I Parameters:

- Set identification (set entry number, or set name)

Default: current default set.

- Test name

Default: current test name

- Set entry number, for the result set.

(It is possible to specify the entry number of the
"operand" set, used as the first parameter, if this

n set is not needed anymore).

- Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

* unchanged.

- Comment text associated to the result set (48

characters, or less).

Default: the same text previously associated to the

* result set entry.

Action:

I This command adds the specified test to the specified set

(if the set does not already contain this test), and

assigns the specified entry number to the resulting set.

3 If this entry was already occupied by a set, the user is

asked to confirm that he wants to deallocate this previous3 set (and loose it, if it has not been saved into a file).

* The result set becomes the current default set.

I

*70

I 5.3.7. Remove a test from a set

I Parameters:

- Set identification (set entry number, or set name)

Default: current default set.

- Test name

n Default: current test name

- Set entry number, for the result set.

(It is possible to specify the entry number of the
"operand" set, used as the first parameter, if this

* set is not needed anymore).

- Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

* unchanged.

- Comment text associated to the result set (48

3 characters, or less).

Default: the same text previously associated to the

* result set entry.

I Action:

I This commands removes the specified test from the

specified set (if the set contains this test), and assigns

the specified entry number to the resulting set. If this

entry was already occupied by a set, the user is asked to

* confirm that he wants to deallocate this previous set (and

loose it, if it has not been saved into a file).

I The result set becomes the current default set.

I
U

I
U 71

E 5.3.8. Union of two sets

i Parameters:

- Set identification of the first set (set entry

number, or set name).

Default: current default set

- Set identification of the second set (set entry

number, or set name).

U - Set entry number, for the result set. (It is possible

to specify the entry number of one of the "operand"5 sets, if this set is not needed anymore).

- Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

i unchanged.

- Comment text associated to the result set (48

I characters, or less).

Default: the same text previously associated to the

* result set entry.

I
Action:

i This command constructs the union of the 2 specified sets:

the set containing the test records that belong to one at

3 least of the two operand sets.

i The resulting set is attached to the specified entry

number. If this entry was already occupied by a set, the

* user is asked to confirm that he wants to deallocate this

previous set (and loose it, if it has not been saved into

3 a file).

I

I

I
I
i

I
i

I
U
I
I
I

I

1 73

1 5.3.9. Intersection of two sets

i Parameters:

- Set identification of the first set (set entry

number, or set name).

3 Default: current default set

- Set identification of the second set (set entry

number, or set name).

- Set entry number, for the result set.

(It is possible to specify the entry number of one of

3 the "operand" sets, if this set is not needed

anymore).

- Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

unchanged.

I - Comment text associated to the result set (48

characters, or less).

3 Default: the same text previously associated to the

result set entry.i
i Action:

This command constructs the intersection of the 2

3 specified sets: the set containing the test records that

belong to both operand sets.

The resulting set is attached to the specified entry

3 number. If this entry was already occupied by a set, the

user is asked to confirm that he wants to deallocate this

previous set (and loose it, if it has not been saved into

I

IL

I
1 74

I.
The result set becomes the current default set.

I
I
I
I
I
I
I
I
I
I
I
I
U
I
I
I

1
375

5.3.10. Difference of two sets

l Parameters:

- Set identification of the first set (set entry

number, or set name).

3 Default: current default set.

i - Set identification of the second set (set entry

number, on set name).

I Set entry number, for the result set.

(It is possible to specify the entry number of one of3the "operand" sets, if this set is not needed

anymore).I
- Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

unchanged.

- Comment text associated to the result set (48

characters, or less).

Default: the same text previously associated to the

result set entry.I
i Action:

This command constructs the asymmetrical difference of theI2 specified sets: the set containing the test records that

belong to the first set and do not belong to the second

3one.

3The resulting set is attached to the specified entry

number.

I
I

I
3 76

i If this entry was already occupied by a set, the user is

asked to confirm that he wants to deallocate this previous

set (and loose it, if it has not been saved into a file).

The result set becomes the current default set.

I
I
I
i
I
I
i
I
I
I
i
I
I
I
I

Al,., ~lnmmm a tg

I

1 77

1 5.3.11. Extract a subset from a set

I Parameters:

- Set identification of the input set (see entry

number, or set name).

3 Default: current default set

- Pattern for the names of the test records to select.

This pattern is a regular expression that may contain

the wildcard character '*'. For example, the pattern

"C5*B" will match all the test records whose name

starts with "C5" and ends with "B".

I Default: *

3 Test name for the lower bound of the range to select.

This parameter may be used to select only the test

records from a given test, in the logbook order.

Default: first test of the logbook.

S- Test name for the upper bound of the range to select.

This parameter may be used to select only the test

5 records that come before a given test, in the logbook

order.

* Default: last test of the logbook.

- Test record kinds of the records to select: one or

several kinds, among GLOBAL, SUBTEST, SPLIT.

Default: any kind

- Status of the test records to select.

3 Default: any status

- Attributes required from the test records to select:

one or several attributes, among WITHDRAWN,

INAPPLICABLE, SPLIT, MACRO, SPECIAL.

Default: none.

U

I

3 78

Attributes refused, causing the exclusion from the

selection: one or several attributes, among

WITHDRAWN, INAPPLICABLE, SPLIT, MACRO, SPECIAL.

5 Default: none.

3 - Set entry number, for the result set.

(It is possible to specify the entry number of the3 input set, used as the first parameter, if this set

is not needed anymore).

3 - Name of the result set (18 characters or less).

Default: the previous name of the result set entry,

I unchanged.

3 - Comment text associated to the result set (48

characters, or less).

Default: the same text previously associated to the

result set entry.

I
Action:I

This command constructs a subset of the input set by

3 selecting only the test records that match the specified

selection criteria, and assigns the specified result set

entry number to this subset. If this entry was already

occupied by a set, the user is asked to confirm that he

wants to deallocate this previous set (and loose it, if it

i has not been saved into a file).

3 The result set becomes the current default set.

I
I
I
,ii -

I 7

1 79

E 5.3.12. Display the history of the sets
3 This command is not implemented in version 0 of the program.

I
£

I
I
I
I
I
i

I
I
U

I
I
I

I

£ 80

5.3.13. Validation management operations (same command as 5.2.7)

I Parameters:

I - None

U
Action:

i This command calls the menu giving access to the

validation management operations: initialize a validation,

display validation information, etc. (see 5.1).

i
i

I

I

I
I

I
I
I

1 81

1 5.3.14. Operations on tests isame command as 5.1.9)

i Parameters:

* - None

I
Action:

I This command calls another menu, giving access to all the

operations on tests of the current validation: analyze

result files, compare, etc. (see 5.2).

The current validation must have been previously defined

(see 5.1.2, 5.1.3, 5.1.6).I
I
I
I
n

I
I
i
I
I

I

£82

5.3.15. Quit (same command as 5.1.11)

I Parameters:

- Update the status file of the current validation ?

(Yes/No)

3 Default: Yes

a Action:

I If any validation, other than the current one, is open,

this command is not executed: the user is asked to close

all these open validations (see 5.1.8). Otherwise, the

status file of the current validation is updated, if this

* has been requested and if some status value has changed

since the last update of the status file. Then the current3 validation is closed (see 5.1.8), all the open files are

closed, and the program execution terminates.

I
I
I
I
I
U
I
I
I

I

3 83

6. TOOL INSTALLATION

3 NOTE: the file names mentionned in this section aLt the ones

that have been used in the development version of the tool, on

a MS-DOS file system. Of course, these names are just provided

as an example, since they must be modified to satisfy the

3 requirements of the file name syntax on other systems.

I
I
U
I
I
I
I
I
I
I
I
I
I
I

1 84

I G.1. Compiling and linking the program

* The set of files provided include the source files of the

program, as well as the file COMPIL.ORD which indicates a

correct compilation order for the source files.

* To create an executable file:

S- create an Ada library

- compile the source files, using the compilation order3 provided in the file COMPIL.ORD

3 - link the program: the main subprogram name is CAV.

I
I
I
U
I
3
I
I
I
U
I

I
m85

6.2. Filling the initialization file (CAV.INI)

m - Make a copy of the model file provided for the

initialization file CAV.INI.

- Read section 4.1.6, for general information about the

3 initialization file.

- Fill the copy of the model file with the file names that
you want to use when executing the program. Read carefully

the information contained in the comments of this file,

about the format of the file. You may also use the example

file provided.

- Preferably, put this file in the current directory when

* executing the program (see 4.1.6).

I
I
I
I
I
I
i
I
U

I
m - imm i

I

* 86

i 6.3. User interface files

i The user interface files, described in section 4.1.4., are:

VALMGT.MNU

TESTOP.MNU

3 SETOP.MNU

COMMANDS.PAR

I Do not modify the contents of these files.

I- Rename them or move them according to their name, which

should be now defined in the initialization file.

U
I
I
I
I
I
I
I
U

I
I

-3-I

£
* 87

I 6.4. Terminal control sequence file

3 The terminal control sequence file is described in section

4.1.5.i
Make a copy of the model file provided (TERMINAL.SEQ), and

5 rename it or move it according to its name, that you have

previously defined in the initialization file. It is

convenient to choose a file name that recalls or contains

the name or identification of the terminal you will be

using.

- Edit this copy, replacing the control sequences it

3 contains by the sequences recognized by your terminal. It

is not necessary to fill the sequences that are commented

3 out. Use the example file provided (IBMPCAT.SEQ), and

read carefully the indications in the comments.

I
I
I

I
I
I
U
U
I
I I

I

3 88

I 6.5. TTINF and test suite files

U They consist of :

- The TTINF file, produced by the Tailoring Tool, and used

by the CAV tool (see 4.1.3).I
- The files produced by CAV for each test suite (sec.

1 4.2.1).

Each kind of test suite file has a generic file name, defined

in the initialization file. This generic name may include the

characters "$U", which represent a test suite name. (It is

3 convenient, when possible, to have one directory for each test

suite: this may be done simply by including "$U" in the

3 directory path of the generic names of the test suite files.)

3 For each test suite that you will use:

- Choose a test suite name.

- From the generic names (of test suite files) that you have

3 defined in the initialization file, figure out the actual

file names by replacing "$U" by the test suite name. If

3 these actual file names contain directory n~mes, create

these directories if they do not exist (so that the tool

3 can create the test suite files).

- Move or rename the TTINF file (produced by the Tailoring

5 Tool for this test suite) according to its generic name,

defined in the initialization file.

I

I
I

* 89

6.6. Validation files

I The validation files are:

- The RESULTFILEDESCRIPTION file (RESULTF.DES) (see

4.1.2).

- The files produced by CAV for each validation (see 4.2.2)

I Each kind of validation file has a generic file name, defined

in the initialization file. This generic name may include the

characters "$V", which represent a validation name. (It is

convenient, when possible, to have one directory for each

3 validation: this may be done simply by including "$V" in the

directory path of the generic names of the validation files.)

For each validation that you will use, either as the current

validation or the reference validation:

- Choose a validation name.

- From tha generic names (of validation files) that you have

3 defined in the initialization file, figure out the actual

file names by replacing "$V" by the validation name. If

these actual file names contain directory names, create

these directories if they do not exist (so that the tool

i can create the validation files).

- Make a copy of the model file provided for the

3 RESULTFILE_DESCRIPTION file (RESULTF.DES), and rename it

or move it according to its "actual name". Generate this

m actual name from the generic name defined in the

initialization file, replacing "SV" by the validation

I name.

i Edit this copy, following the indications it contains.

I

* 91

I 6.7. Test result files

I Check that the test result files have names that conform with

the generic names of the initialization file.

If not, you may:I
- Either change the generic names to make them represent

3 correctly the whole set of result files,

- Or move/rename the test result files in conformance with

the generic file nL-es,

3 - Or do a combination of both.

I
I
I
I
I
i
I

I
U

I

I
I q2

I 7. TOOL EXECUTION

The following steps and commands give an idea of how the CAV
tool may be used. They are mentionned just as an example: feel3 free to use the tool in a different way:

- Initialize a test suite (TTINF file must exist)

- Initialize a validation

Call this command for the current validation, then for the
reference validation. Both validations must be associated

to the same test suite, which must be already

initialized.I
Call the "Operations on sets" menu

Use set operations to create sets of tests to be submitted
to the "Analyze" command, and to the "Compare" command.

I The predefined sets ANALYZESET and COMPARESET may .e

used as initial sets, that you may modify to obtain the

i exact sets that you need.

* - Analyze execution result files

Use ANALYZESET or a derived set.

I - Compare compilation/link result files

Use COMPARESET or a derived set.

Extract subsets from a set

Construct the set of the tests having the status

TOBECHECKEDBYHAND. Save this set into a file. Do the3 same thing with the status UNKNOWNYET,

PASSEDANDSPECIAL, INAPPLANDSPECIAL.

I
I
I

I 93

- Display test information

Use this command to create files containing the names of

the test of the sets just created (for the

TOBECHECKEDBYHAND tests, ...).I_
Quit the program to check the logbook file of the current

* validation

See what happened to the TOBECHECKEDBYHAND tests, and

to the NONCONFORMANT tests. The logbook file also contains

the full text of the execution result files of the SPECIAL

tests: this is convenient for filling the validation

logbook. The logbook file may be printed, the special

actions required for the special tests may be done, then

the tool may be launched again:

* - Set a validation as the current validation

To load the previous status file and all the validation

3 information.

Read a set from file

Load the previously saved sets:

PASSEDANDSPECIAL tests

. INAPPLANDSPECIAL tests

etc.

H - Update test status

For each test of these 2 sets, update the status (to

PASSED, INAPPLICABLE, or ...), according to the issue of

the special actions previously done. Update also the

i status of the tests that have been checked by hand.

3 - At this point, only a few tests should remain, that do not

have the status PASSED, INAPPLICABLE, or FAILED.

* These test must probably be treated one by one.

I
I

